

International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 14 Number 11 (2025)

Journal homepage: http://www.ijcmas.com

Original Research Article

https://doi.org/10.20546/ijcmas.2025.1411.006

Susceptibility Profile of Salmonella typhi and Salmonella paratyphi A in A Tertiary Care Hospital

M. M. Athulya¹, M. Savitha¹, Reshmi Gopalakrishnan², Swathy Viswanath¹, M. P. Anjali¹, Irfana¹, Gayathri Meyana¹ and P. P. Vismaya¹

¹Department of Microbiology, MIMS college of Allied Health Sciences, Kerala University of Health Sciences, Malappuram, India

²Department of Microbiology, Aster MIMS Hospital, Calicut, India

*Corresponding author

ABSTRACT

KeywordsSalmonella typhi,
Salmonella

paratyphi A, Antibiotic susceptibility pattern change

Article Info

Received: 12 September 2025 Accepted: 24 October 2025 Available Online: 10 November 2025 Enteric fever is a life-threatening systemic illness caused by Salmonella Typhi and Salmonella paratyphi. It is transmitted by the fecal-oral route via contaminated food and water and is therefore common where sanitary conditions are inadequate and access to clean water is limited. Historically, the first-line agents (ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole) were the drug of choice for the management of enteric fever. Since the emergence of drug-resistant strains of Salmonella, first-line antibiotics fell out of favor and were not frequently used for this illness lately. Interestingly, there have been recent reports of first-line antibiotic susceptible Salmonella strains. This reemergence of first-line antibiotic sensitive Salmonella strains is promising and highlights the importance of continuous antibiogram surveillance and helps in typhoid management. To study the change in antibiogram pattern of Salmonella Typhi and Salmonella paratyphi a over two years. Samples such as blood, stool, urine, body fluids received in microbiology department of ASTER MIMS HOSPITAL are examined for salmonella using standard bacteriological methods. Antimicrobial susceptibility is tested using Kirby -Bauer disc diffusion method results interpreted according to CLSI guidelines. The VITEK® 2 Compact automatic system is employed for identification. Among the 133 isolates studied 66 identified as Salmonella Typhi and Salmonella Paratyphi A, people aged 21-30 were more in number. majority of isolates were from blood followed by bone marrow and stool, case numbers was peaking between April and July the overall antimicrobial susceptibility profile of Salmonella Typhi and S. Paratyphi A remained highly favorable for the firstline drugs that is ampicillin, amoxiclay, ceftriaxone and cefixime which continued to show 100 % sensitivity Although ciprofloxacinsusceptibility rate for S. Typhi was unchanged, resistance incresed by 6 %, and the proportion of intermediate isolates decreased by 7 %, In S. Paratyphi A, effectiveness of ciprofloxacin has declined by 17%, . Azithromycin Susceptibility has decreased in both isolates (1% for S. Typhi, 6 % for S. Paratyphi A). An increase in sensitivity to chloramphenicol was recorded (4% for S. Typhi, 14 % for S. Paratyphi A). Ampicillin, amoxiclav, ceftriaxone and cefxime continue to be the Most reliable empirical options, the gradual changes in ciprofoxacin and azithromycin susceptibility pattern highlights the importance of continual monitoring of change in antibiotic susceptibility to ensure effective treatment and address emerging resistance.

Introduction

Enteric fever is a disease caused by Typhoidal strains of Salmonella, including *S. Typhi* and S. Paratyphi. It is transmitted through contaminated food and water. Typically, in regions lacking adequate sanitation and access to clean drinking water. (1) Once it enters the body, *S. typhi* primarily targets the small intestine (specifically the ileum), along with the liver, spleen, and bone marrow. Gallbladder, and bloodstream, potentially leading to conditions like bacteremia and septicemia.

The disease usually presents with symptoms such as a high-grade fever, exhaustion, abdominal discomfort, and diarrhea. Complications can include Leukopenia and platelet counts, along with elevated levels of C-reactive protein and alanine aminotransferase (ALT). Poor sanitation and low socioeconomic status play an important part in the continued transmission of the disease. (2) Historically, antibiotics including antibiotics like ampicillin, chloramphenicol, and cotrimoxazole were considered the primary treatment options. (2) Although the introduction of antibiotics significantly decreased the rates of illness and death, the growing issue of antibiotic-resistant strains now poses a significant issue in public health concern. Currently S. enterica Typhi shows considerable resistance to serovar commonly prescribed antibiotics. Multidrug-resistant (MDR) strains of both S. Typhi and S. Paratyphi have become more prevalent, especially in developing nations. Reports have documented resistance to antibiotics like chloramphenicol, amoxicillin, cotrimoxazole, ciprofloxacin, further complicating treatment. (2) Due to the rise of these resistant strains, earlier first-line treatments fell out of common use. However, new findings have shown that some strains have regained sensitivity to these older antibiotics, suggesting a possible shift in treatment strategies. This reap of antibiotic- sensitive strains underlines the importance of ongoing antibiotic susceptibility testing (antibiogram surveillance) in effectively managing typhoid fever. (3) This study helps in identifying the change in susceptibility profile of S. Typhi and S. Paratyphi A

Materials and Methods

Salmonella species isolated from clinical samples in laboratory were collected. during a period of one year prospective and one year retrospective. Demographic Information comprising the patient's name, age, and sex, together with the identified organism and its antibiotic sensitivity pattern for ampicillin, azithromycin, amoxiclav, cefixime, co-trimoxazole, ciprofloxacin, ceftriaxone, and chloramphenicol are done. Samples were processed, identified and confirmed by biochemical reactions and automated methods i.e. BACT ALERT and VITEK systems, done as per the standard laboratory procedures. The antibiotic susceptibility test by the Kirby Bauer's disc diffusion method diffusion technique and interpreted using Clinical and Laboratory Standards Institute (CLSI) recommendations and VITEK 2 system.

Results and Discussion

The study was conducted in the Department of Microbiology, Aster MIMS hospital Calicut during a period of one year prospective and one year retrospective from January 2024 to December 2024.

A total of 133 Salmonella isolates obtained during the study period, with 66 identified as *Salmonella Typhi* and *Salmonella Paratyphi A*. Out of these, 32 isolates were from the year 2023, and 34 were from the year 2024.

Year wise data of salmonella isolated

Sample Wise Incidence

In 2023 out of 32 isolates majority of isolates were from blood followed by bone marrow, Whereas In 2024 out of 34 isolates majority of organism were from blood followed by stool

Gender Wise

Males accounted for the majority of the cases (n=46, 70%) compared to females (n=20, 30%).

Month Wise

Antibiotic susceptibility pattern of the salmonella typhi 2023 -2024

Year-wise trend in antibiotic sensitivity rates of salmonella typhi from 2023 to 2024

All S. Typhi isolates were 100% sensitive to ampicillin, ceftriaxone, cotrimoxazole, amoxiclav and an increased sensitivity rates were seen in chloramphenicol (4%) and decreased sensitivity was seen in azithromycin (1%) in

2024 than in 2023. cefixime and ciprofloxacin remained sensitivity rates same in both years. ciprofloxacin, resistance was increased by 6% from 2023 to 2024

Year-wise trend in antibiotic intermediate results of salmonella typhi from 2023 to 2024

Intermediate susceptibility was observed only for ciprofloxacin in *S. Typhi* intermediate susceptibility rate of ciprofloxacin was decreased (7%) from 2023 to 2024

Year -wise trend in antibiotic sensitivity rates of salmonella paratyphi a from 2023 to 2024

Sensitivity rates of salmonella paratyphi a from 2023 to 2024

All S. Paratyphi A isolates were 100% sensitive to ampicillin, ceftriaxone, cotrimoxazole, amoxiclav and cefixime. Increased sensitivity was seen in chloramphenicol (14%) decreased sensitivity rates was seen in azithromycin (6%) and ciprofloxacin (17%) from 2023 to 2024

In this study out of total 133 salmonella isolates obtained during the study period, 49 isolates were found to be S. Typhi and 17 were found to be S. Paratyphi. according to the study conducted by Buckle et al., (4) S. Typhi is more prevalent than S. Paratyphi A globally in the present study Males accounted for the majority of the cases (70%) compared to females 30%. This shows similarities between the study conducted by Masab Umair et al., (3), in which Males accounted for the majority of the cases 66. 3% and 33. 7%were females here highest incidence was observed among young adults aged 21-30 years accounting for 42% of cases which is similar to study by Sudeepa Kumar et al., (5) Salmonella Typhi and Paratyphi A were highest in the age group 21 - 30 years. In this study, The highest number of cases were reported in months of April, May, June, July, indicating a seasonal trend which is similar to a study conducted by Yasir

Mayeli Flores Monter et al., (6) where more cases are in April and May reaching a peak in July, with a decrease in September. All S. Typhi isolates were 100% sensitive to ampicillin, ceftriaxone, cotrimoxazole, amoxiclav which is similar to study of Satish Kumar Reddy et al.. (7) which showed 100% isolates were susceptible to ceftriaxone, 99% isolates were susceptible to Ampicillin, 95% isolates were susceptible to cotrimoxazole. a study by Mohammed Nafiudin Rashed et al., (8) found that All isolates were 100% sensitive to amoxicillin-clavulanic acid. In this study increased sensitivity rates were seen in chloramphenicol (4%) which is similar to study by Krishnan, Padimate et al., (9) In which Salmonella enterica serovar typhi showed significant increase in sensitivity to chloramphenicol, here decreased sensitivity was seen in azithromycin (1%) which is similar to study by Usman Baig et al., (10) in which The lowest resistance was noted for azithromycin, and. ciprofloxacin, resistance was increased by 6% in 2024 than in 2023. which is similar to study by Jaffar A. Al- Tawfig et al., (11) The study showed that the resistance rate to ciprofloxacin increased over time, with values ranging from 1. 6% to 6%, respectively. Intermediate susceptibility was observed only for in S. Typhi. All S. Paratyphi A isolates were 100% sensitive to ampicillin, ceftriaxone, cotrimoxazole, amoxiclay, Increased sensitivity was seen in chloramphenicol (14%) which is similar to study by Lakshmi V, Ashok et al., (12) in which the S. Paratyphi A isolates showed a significant increase in the sensitivity pattern to chloramphenicol. in this study decreased sensitivity rates was seen for ciprofloxacin (17%) from 2023 to 2024 which is similar to study by Mohammad S I Sajib et al., (13) in which 16. 8 % isolates had decreased ciprofloxacin susceptibility. in this study decreased sensitivity rates was seen for azithromycin (6%) which is similar to a study by Maria Sjölund-Karlsson et al., (14) in which azithromycin susceptibility for S. Paratyphi A, Susceptible proportion dropped from 99 % (2021) to 92–94 % (2024) – i. e. 6–8 % now non-susceptible

Table.1 Year wise incidence of Salmonella Typhi and Salmonella Paratyphi A

2023		2024		
S. Typhi	S. Paratyphi	S. Typhi S. Paratyphi		
25	7	24	10	

Table.2 Sample wise incidence of Salmonella Typhi and Salmonella Paratyphi A

Sample	2023	3	2024	
	S. Ty	phi	S. Parat	typhi
Blood	24	7	23	10
Bone marrow	1	0	0	0
Stool	0	0	1	0

Table.3 Gender wise distribution of Salmonella Typhi and Salmonella Paratyphi A

Gender	Number of Salmonella Typhi and Salmonella Paratyphi A			
	Number Percentage			
Male	46	70		
Female	20	30		

Table.4 Age wise distribution of Salmonella Typhi and Salmonella Paratyphi A

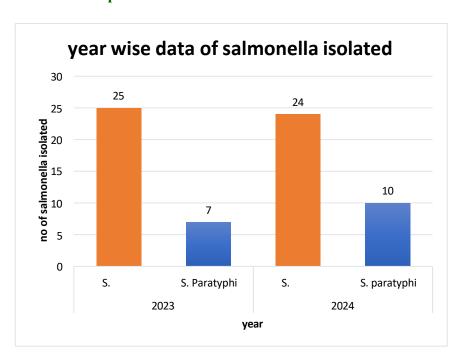
AGE	NUMBER		
1 to 10	4		
11 to 20	14		
21 to 30	24		
31 to 40	13		
41 to 50	3		
>60	8		

Table.5 Month wise incidence of Salmonella Typhi and Salmonella Paratyphi A (2023-2024)

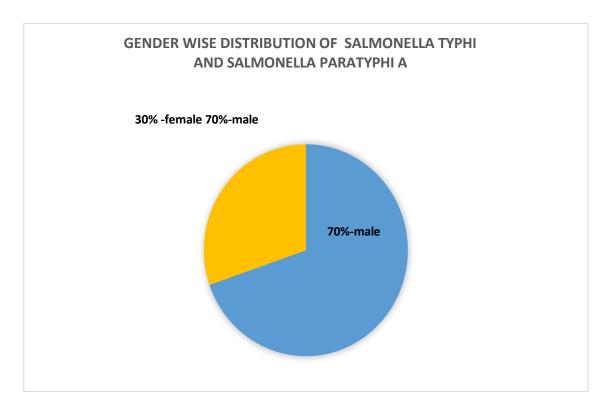
Month	No. of Salmonella isolated				
January	4				
February	2				
March	6				
April	7				
May	10				
June	9				
July	8				
August	4				
September	4				
October	6				
November	2				
December	4				

Table.6 Year-wise trend in antibiotic sensitivity rates of Salmonella Typhi from 2023 to 2024

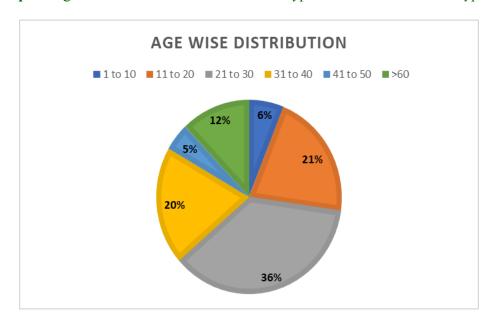
ANTIBIOTIC	2023		2024	
	No	%	No	%
AMPICILIN	25	100	24	100
AZITHROMYCIN	23	92	23	96
CEFTRIAXONE	25	100	24	100
CIPROFLOXACIN	2	8	2	8
COTRIMOXAZOE	25	100	24	100
AMOXYCLAV	25	100	24	100
CEFIXIME	24	96	23	96
CHLORAMPHENICOL	22	88	22	92

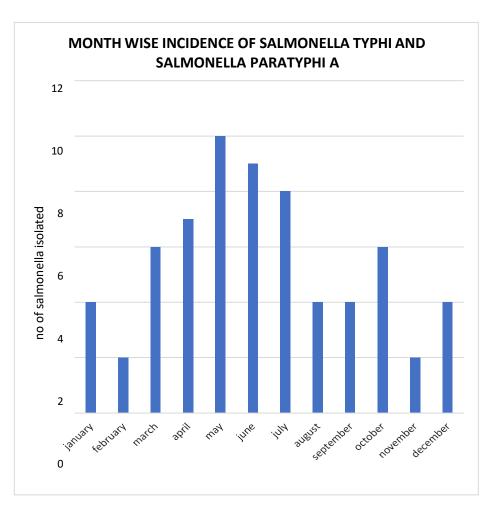

Table.7 Year -wise trend in antibiotic intermediate results of Salmonella Typhi from 2023 to 2024

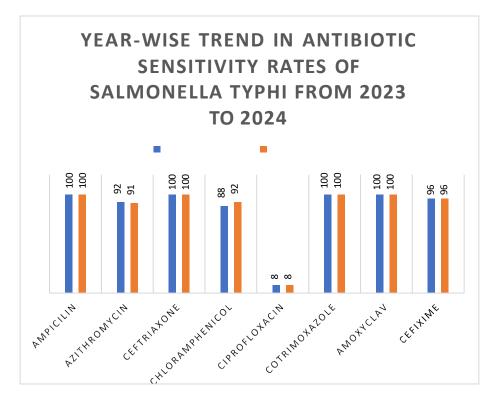
Antibiotic	2023		2024	
	No	%	No	%
Ampicilin	0	0	0	0
Azithromycin	0	0	0	0
Ceftriaxone	0	0	0	0
Ciprofloxacin	9	36	7	29
Cotrimoxazole	0	0	0	0
Amoxyclav	0	0	0	0
Cefixime	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
Chloramphenicol	0	0	0	0

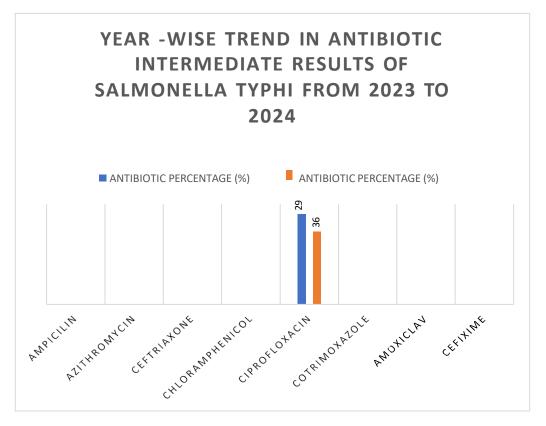

Table.8 Year -wise trend in antibiotic sensitivity

Antibiotic	2023		2024	
	No	%	No	%
Ampicilin	7	100	10	100
Azithromycin	6	86	8	80
Ceftriaxone	7	100	10	100
Ciprofloxacin	4	57	4	40
Cotrimoxazole	7	100	10	100
Amoxyclav	7	100	10	100
Cefixime	7	100	10	100
Chloramphenicol	6	86	10	100


Graph.1 Year wise data of Salmonella isolated


Graph.2 Gender wise distribution of Salmonella Typhi and Salmonella Paratyphi A


Graph.3 Age wise distribution of Salmonella Typhi and Salmonella Paratyphi A


Graph.4 Month wise incidence of Salmonella Typhi and Salmonella Paratyphi A

Graph.5 Year-wise trend in antibiotic sensitivity rates of Salmonella Typhi from 2023 to 2024

Graph.6 Year -wise trend in antibiotic intermediate results of Salmonella Typhi from 2023 to 2024

YEAR -WISE TREND IN ANTIBIOTIC SENSITIVITY RATES OF SALMONELLA PARATYPHI A FROM 2023 TO 2024

2023PERCENTAGE (%) 2024PERCENTAGE (%)

2024PERCENTAGE (%)

2024PERCENTAGE (%)

2024PERCENTAGE (%)

2024PERCENTAGE (%)

2024PERCENTAGE (%)

2024PERCENTAGE (%)

Graph.7 Year -wise trend in antibiotic sensitivity rates of *Salmonella Paratyphi A* from 2023 to 2024

In the current study the change in antibiotic pattern of *S. Typhi* and *S. Paratyphi A*, between 2023 and 2024 was studied. Among the 133 isolates studied 66 identified as *Salmonella Typhi* and *Salmonella Paratyphi A*, people aged 21–30 were more in number. Majority of isolates were from blood followed by bone marrow and stool with case numbers peaking between April and July. The overall antimicrobial susceptibility profile of *Salmonella Typhi* and *S. Paratyphi A* remained highly favourable for the Firstline drugs that is ampicillin, amoxiclav, ceftriaxone and cefixime which continued to show 100 % sensitivity.

Although ciprofloxacin susceptibility rate for *S. Typhi* was unchanged, resistance increased by 6 %, and the proportion of intermediate isolates decreased by 7 %, indicating a drift of previously intermediate strains toward full resistance.

In *S. Paratyphi A*, effectiveness of ciprofloxacin has declined by 17%, making it an unreliable choice for initial treatment without prior testing. Azithromycin Susceptibility has decreased in both isolates (1 % for *S. Typhi*, 6 % for *S. Paratyphi A*), suggesting reduced effectiveness. An increase in sensitivity to chloramphenicol was recorded (4 % for *S. Typhi*, 14 %

for *S. Paratyphi A*), indicates increased effect observed after limited use. Clinical use still demands caution because resistance can reemerge rapidly.

The study highlights the importance of monitoring antibiotic susceptibility pattern in *S. Typhi* and *S. Paratyphi A* while first line drugs, ampicillin, amoxiclav, ceftriaxone and cefixime continue to Be effective, and reliable empirical options.

The gradual changes in ciprofloxacin and azithromycin Susceptibility emphasize the need for ongoing surveillance to ensure effective treatment

Acknowledgement

I express my heartfelt gratitude to my esteemed guide, Mrs. Savitha Anoop, Professor, Department of Microbiology, MIMS COAHS, Malappuram, for her dedicated guidance, personal involvement, timely advice, and critical evaluation throughout the study. I am sincerely thankful to Dr. Reshmi Gopalakrishnan, Consultant Microbiologist, Department of Microbiology, Aster MIMS Calicut, for granting me the opportunity to carry out this research and for her constant support, without which this work would not have been possible. I

also extend my appreciation to Mr. Suhas K. T., Principal, MIMS COAHS, Mrs. Swathy Vishwanath, Mrs. Jincy, and Ms. Drishya Dinesan, for their valuable assistance, encouragement, and friendly guidance. My sincere thanks are due to all laboratory professionals and staff of the Department of Microbiology, Aster MIMS Calicut, and to Ms. Binchupriya P, Assistant Librarian, MIMS COAHS, for their cooperation and support in completing this study. I am deeply indebted to my parents, Mr. Shaju M. M. and Mrs. Reenak, and my brother Mr. Athul M. M., whose unwavering support, blessings, and encouragement gave me the strength and confidence to complete this work. I also extend my gratitude to all teaching and non-teaching staff who made my journey smoother. Lastly, I warmly thank my dear friends Anjali M. P., Gayathri M., Irfana, and Vismaya P. P. for their constant motivation and support. I remain sincerely grateful to everyone who contributed to the successful completion of this project.

Author Contributions

M. M. Athulya: Investigation, formal analysis, writing—original draft. M. Savitha: Validation, methodology, writing—reviewing. Reshmi Gopalakrishnan:—Formal analysis, writing—review and editing. Swathy Viswanath: Investigation, writing—reviewing. M. P. Anjali: Resources, investigation writing—reviewing. Irfana: Validation, formal analysis, writing—reviewing. Gayathri Meyana: Conceptualization, methodology, data curation, supervision, writing—reviewing the final version of the manuscript. P. P. Vismaya: Validation, methodology, writing—reviewing.

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethical Approval Not applicable.

Consent to Participate Not applicable.

Consent to Publish Not applicable.

Conflict of Interest The authors declare no competing interests.

References

- Admassu D, Egata G, Teklemariam Z. Prevalence and antimicrobial susceptibility pattern of Salmonella enterica serovar Typhi and Salmonella enterica serovar Paratyphi among febrile patients at Karamara Hospital, Jigjiga, eastern Ethiopia. SAGE Open Med. 2019 Mar 15; 7: 2050312119837854.
 - https://doi.org/10.1177/2050312119837854.
- Al-Tawfiq JA. Antimicrobial susceptibility of Salmonella typhi and non-typhi in a hospital in Eastern Saudi Arabia. J Chemother (Florence). 2007; 19 (1): 62-5. https://doi.org/10.1179/joc.2007.19.1.62.
- Baig U mehdi SM a pattern of antibiotic drug resistance of Salmonella Typhi and Salmonella Paratyphi among childrens with enteric fever in a tertiary care hospital in Lahore, Pakistan. croat med J 2023 aug 31; 64 (4): 256-264. https://doi.org/10.3325/cmj 2023.64.256.
- Biswas M, Biswas S, Gupta B, Mascellino MT, Rakshit A, Chakraborty B. Changing paradigms in antibiotic resistance in Salmonella species with focus on fluoroquinolone resistance: a 5- year retrospective study of enteric fever in a tertiary care hospital in Kolkata, India. Antibiotics (Basel). 2022 Sep 26; 11 (10):1308. https://doi.org/10.3390/antibiotics11101308.
- Buckle GC, Walker CL, Black RE. Typhoid fever and paratyphoid fever: systematic review to estimate global morbidity and mortality for 2010. J Glob Health. 2012 Jun; 2 (1): 010401. https://doi.org/10.7189/jogh.02.010401.
- Chandrashekar SC, Sudeep Kumar M. A study of antibiotic susceptibility pattern of Salmonella typhi and Salmonella Paratyphi A. Int J Curr Microbiol App Sci. 2018; 7 (2): 658-62.
- Lakshmi V, Ashok R, Susmita J, Shailaja V. Changing trends in the antibiogram of Salmonella isolates at a tertiary care hospital in Hyderabad. Indian J Med Microbiol. 2006; 24 (1): 45-8. https://doi.org/10.4103/0255-0857.19894.
- Parry CM. Epidemiological and clinical aspects of human typhoid fever. In: Wain J, editor. Salmonella infections: Clinical, immunological and molecular aspects. Cambridge: Cambridge University Press; 2006. p. 1–8.
- Pérez Jorge G, Gontijo M, Silva MFE, Goes ICRDS, Jaimes-Florez YP, Coser LO, Rocha FJS, Giorgio S, Brocchi M. Attenuated mut ants of Salmonella

- enterica Typhimurium mediate melanoma regression via an immune response. Exp Biol Med (Maywood). 2024 Jun 21; 249: 10081. https://doi.org/10.3389/ebm.2024.10081.
- Rashed, M. R., Yadav, A., & Jakribettu, R. P. (2019). Trends in antimicrobial susceptibility of blood culture-positive typhoid fever over half a decade in adults attending a tertiary care teaching hospital in South India. International Journal of Basic & Clinical Pharmacology, 8 (11), 2523–2527
- Sajib MSI, Tanmoy AM, Hooda Y, Rahman H, Andrews JR, Garrett DO, Endtz HP, Saha SK, Saha S. Tracking the emergence of azithromycin resistance in multiple genotypes of typhoidal Salmonella. mBio. 2021 Feb 16; 12 (1): e03481-20. https://doi.org/10.1128/mBio.03481-20.
- Sathish kumar reddy G, N Raghu Prakash Reddy.antimicrobial susceptibility pattern for salmonella typhi in a tertiary care hospital. International journal of pharmaceutical and clinical research 2023; 15 (7); 1340-1342
- Sjölund-Karlsson M, Joyce K, Blickenstaff K, Ball T, Haro J, Medalla FM, Fedorka-Cray P, Zhao S, Crump JA, Whichard JM. Antimicrobial susceptibility to azithromycin among Salmonella enterica isolates from the United States. Antimicrob Agents Chemother. 2011 Sep; 55 (9): 3985-9. https://doi.org/10.1128/AAC.00590-11.
- Umair M, Siddiqui SA. Antibiotic susceptibility patterns of Salmonella Typhi and Salmonella Paratyphi in a tertiary care hospital in Islamabad. Cureus. 2020 Sep 3; 12 (9): e10228. https://doi.org/10.7759/cureus.10228.

How to cite this article:

Athulya M. M., M. Savitha, Reshmi Gopalakrishnan, Swathy Viswanath, M. P. Anjali, Irfana, Gayathri Meyana and Vismaya P. P. 2025. Susceptibility Profile of Salmonella Typhi and Salmonella Paratyphi A in A Tertiary Care Hospital. *Int.J. Curr. Microbiol. App. Sci.* 14(11): 55-65. **doi:** https://doi.org/10.20546/ijcmas.2025.1411.006